

# AMD HD7750 PCIe® ADD-IN BOARD Datasheet

### (AEGX-A3T2-01FMT1)



### **CONTENTS**

| 1. | Featu                       | eature3                                           |    |  |  |  |  |
|----|-----------------------------|---------------------------------------------------|----|--|--|--|--|
| 2. | Funct                       | Functional Overview                               |    |  |  |  |  |
|    | 2.1.                        | Memory Interface                                  | 4  |  |  |  |  |
|    | 2.2.                        | Memory Aperture Size                              | 4  |  |  |  |  |
|    | 2.3.                        | Avivo™ Display System                             | 5  |  |  |  |  |
|    | 2.4.                        | DVI/HDMI Features                                 | 5  |  |  |  |  |
|    | 2.5.                        | DisplayPort 1.2 Features                          | 5  |  |  |  |  |
|    | 2.6.                        | Integrated HD-Audio Controller (Azalia) and Codec | 6  |  |  |  |  |
|    | 2.7.                        | CRT DAC                                           | 7  |  |  |  |  |
|    | 2.8.                        | Bus Support Features                              | 7  |  |  |  |  |
| 3. | PIN As                      | ssignment and Description                         | 8  |  |  |  |  |
| 4. | Power                       | r Consumption                                     | 12 |  |  |  |  |
| 5. | Outpu                       | It configuration and Board Dimension              | 13 |  |  |  |  |
|    | 5.1.                        | Output Configuration                              | 13 |  |  |  |  |
|    | 5.2 Bc                      | bard Dimension                                    | 14 |  |  |  |  |
| 6. | Thermal Mechanism15         |                                                   |    |  |  |  |  |
| 7. | Order Information           |                                                   |    |  |  |  |  |
| 8. | Change Log Update History18 |                                                   |    |  |  |  |  |



### 1. Feature

| Model Name                                             | AEGX-A3T2-01FMT1                                      |
|--------------------------------------------------------|-------------------------------------------------------|
| Graphics Processing Unit                               |                                                       |
| GPU                                                    | HD7750 (Cape Verde)                                   |
| Process Technology                                     | 28 nm                                                 |
| Graphics Engine Operating<br>Frequency (max)           | 800 GHz                                               |
| Form Factor                                            | ATX (168 X 69 mm)                                     |
| GPU Interface                                          | PCI Express <sup>®</sup> 3.0 (X16)                    |
| Shader Processing Units                                | 512 shaders                                           |
| Floating Point Performance<br>(single precision, peak) | 912 GFLOPs                                            |
| DirectX <sup>®</sup> capability                        | DirectX <sup>®</sup> 11.1                             |
| Shader Model                                           | Shader Model 5.0                                      |
| OpenGL                                                 | OpenGL™ 4.2                                           |
| OpenCL™                                                | OpenCL™ 1.2                                           |
| Unified Video Decoder (UVD)                            | UVD3 for H.264, VC-1, MPEG-2, MPEG-4 part 2<br>decode |
| Memory                                                 |                                                       |
| Memory Operating Frequency<br>(max)                    | 1125 MHz / 4.5 Gbps                                   |
| Configuration, type                                    | 128-bit wide, 1 GB, GDDR5                             |
| Display Interface                                      |                                                       |
| Single / Dual-Link DVI                                 | Dual DVI-D X1                                         |
| CRT                                                    | 15-pin D-SUB X 1                                      |
| HDMI                                                   | HDMI X1                                               |



### 2. Functional Overview

### 2.1. Memory Interface

"Cape Verde (HD7750)" has four DRAM sequencers. Each DRAM channel is 32-bit wide. All DRAM devices must be of the same type, have the same size on each channel, and must run at the same voltage.

Supported DRAM Component Organizations:

- 4, 8, or 16 banks (2, 3, or 4 bank bits). Single- or dual-rank.
- Rows: 1024, 2048, 4096, 8192, 16384, 32768, or 65536 (10, 11, 12, 13, 14, 15, or 16 bits).
- Columns: 256, 512, 1024, or 2048 (8, 9, or 10 bits).
- CS (chip select): 1 or 2.

### **2.2.** Memory Aperture Size

The memory-aperture size can be set up to a recommended maximum of 256 MB through the ROM\_CONFIG[2:0] strap or a separate video ROM. Refer to the description of the ROM\_CONFIG[2:0] strap in Table 3–36 (p. 52) and the MEM\_AP\_SIZE [2:0] strap in Table 3–39 (p. 55) for more information.

The memory aperture defines the address range that the CPU can access. The memory-aperture size assigned to the GPU by the system BIOS is different from the physical-memory size that the AMD display driver reports to the operating system and control panel. It does not limit the GPU's ability to use the entire frame-buffer memory at any time. Modern graphics and multimedia applications use drivers to alter the frame-buffer contents—direct manipulation of the frame buffer by the CPU is limited. Therefore, having a memory-aperture size that is smaller than the physical frame-buffer size does not limit performance. The AMD display driver reports the memory size based on the amount of physical VRAM installed on the card rather than the memory-aperture size.

Due to memory-management constraints, the memory-aperture size should be the same as the frame-buffer size for 64 MB, 128 MB, and 256 MB. For frame-buffer sizes larger than 256 MB, such as 512 MB and 1 GB, the memory-aperture size should be 256MB.

AD\ANTECH

### 2.3. Avivo<sup>™</sup> Display System

The AMD Avivo<sup>™</sup> display system supports VGA, VESA super VGA, and accelerator mode graphics display on six independent display controllers.

The full features of the AMD Avivo display system are outlined in the following sections.

### 2.4. DVI/HDMI Features

- Advanced DVI capability supporting 10-bit HDR (high dynamic range) output.
- Supports industry-standard CEA-861B video modes including 480p, 720p, 1080i, and 1080p. For a full list of currently supported modes, contact your local AMD support person.
- Maximum pixel rates for 24-bpp outputs are:
  - DVI—162 MP/s (megapixels per second) for single-link DVI
  - DVI—268.5 MP/s for dual-link DVI
  - HDMI—297 MP/s.
- Compliant with the DVI electrical specification.
- The HDMI specification meets the Windows Vista<sup>®</sup> logo

### 2.5. DisplayPort 1.2 Features

- Supports all the mandatory features of the *DisplayPort Standard Version 1.2* and the following optional features on links A, B, C, D, E, and F:
  - ACM packet-type support.
  - ISRC packet-type support.
- Each DisplayPort link can transport up to six video streams; one from each display engine.
- Each DisplayPort link can support three options for the number of lanes and three options for link-data rate as follows:
  - Four, two, or one lane(s).
  - 5.4-, 2.7-, or 1.62-GHz link-data rate per lane.
- Supports all video modes supported by the display controller that do not oversubscribe the link bandwidth.
  - Examples of supported pixel-rate/resolution for four lanes at 5.4-GHz link rate:
    - Link bandwidth allows pixel clocks of up to 718 MP/s for 24 bpp or 574 MP/s for 30 bpp.

AD\ANTECH

- 2560 × 2048 @ 60Hz, 30 bpp is supported.
- Examples of supported pixel-rate/resolution for two lanes at 5.4-GHz link rate:
  - Link bandwidth allows pixel clocks of up to 359 MP/s for 24 bpp or 287 MP/s for 30 bpp.
  - 2560 × 1600 @ 60Hz, 30 bpp is supported.
- The following table shows the maximum pixel rates for four, two, or one lane(s) at 5.4-GHz link rate.

|            | 18 bpp   | 24 bpp   | 30 bpp   |
|------------|----------|----------|----------|
| One Lane   | 239 MP/s | 179 MP/s | 143 MP/s |
| Two Lanes  | 478 MP/s | 359 MP/s | 287 MP/s |
| Four Lanes | 957 MP/s | 718 MP/s | 574 MP/s |

#### Table 2-4 Maximum Pixel Rates at 5.4-GHz Link Rate

- Enhanced audio capabilities:
  - Supports PCM audio rates up to 192 kHz.
  - Dolby-TrueHD bitstream and DTS-HD Master Audio bitstream capable

#### 2.6. Integrated HD-Audio Controller (Azalia) and Codec

- HD-audio HDMI, DisplayPort, and wireless display outputs.
- Multiple output stream DMAs.
- Maximum output bandwidth of 73.728 Mbit/s.
- Low power ECN support.
- Hardware silent stream.
- Function level reset.
- Compatible Microsoft<sup>®</sup> UAA driver support for basic audio.
- For advanced functionality (as follows), an AMD or a third party driver is required.
- LPCM:
  - Speaker formats: 2.0, 2.1, 3.0, 4.0, 5.1, 6.1, and 7.1
  - Sample rates: 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz
  - Bits per sample: 16, 20, and 24
- Non-HBR Compressed audio pass-through up to 6.144 Mbps:
  - Supports AC-3, MPEG1, MP3 (MPEG1 layer 3), MPEG2, AAC, DTS, ATRAC, Dolby Digital+, WMA Pro, and DTS-HD.

#### **Enabling an Intelligent Planet**

- HBR compressed audio pass-through up to 24.576 Mbps:
  - Supports DTS-HD Master Audio and Dolby True HD.
- Plug-and-Play:
  - Sink audio format capabilities declaration.
  - Sink information.
  - AV association.
- Lip sync information.
- HDCP content protection

### 2.7. CRT DAC

- One integrated triple 10-bit DAC with built-in reference circuit, which takes output from either one of the internal display controllers (primary or secondary).
- A single RGB-CRT output.
- Support for the stereo-sync signal to drive a 3D display.
- A maximum pixel frequency of 400 MHz.
- An individual power-down feature for each of the three guns.
- Compliant with the VSIS electrical specification.
- Integrated with a built-in bandgap reference circuitry.
- A static detection circuitry (S\_detect) for hot-plug/unplug capability
- An integrated static monitor-detection circuit

### **2.8. Bus Support Features**

- Compliant with the PCI Express<sup>®</sup> Base Specification Revision 3.0, up to 8.0 GT/s.
- Supports ×1, ×2, ×4, ×8, and ×16 lane widths.
- Supports 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s link-data rates.
- Supports ×16 lane reversal where the receivers on lanes 0 to 15 on the graphics endpoint are mapped to the transmitters on lanes 15 down to 0 on the root complex.
- Supports ×16 lane reversal where the transmitters on lanes 0 to 15 on the graphics endpoint are mapped to the receivers on lanes 15 down to 0 on the root complex (requires corresponding support on the root complex).
- Supports full-swing and low-swing transmitter output levels.



### 3. PIN Assignment and Description

| Pin | Side                            | e B Connector    |                       | Side A Connector         |
|-----|---------------------------------|------------------|-----------------------|--------------------------|
| #   | Name Description                |                  | Name Description Name |                          |
| 1   | +12v                            | +12 volt power   | PRSNT#1               | Hot plug presence detect |
| 2   | +12v +12 volt power             |                  | +12v                  | +12 volt power           |
| 3   | RSVD                            | Reserved         | +12v                  | +12 volt power           |
| 4   | GND                             | Ground           | GND                   | Ground                   |
| 5   | SMCLK                           | SMBus clock      | JTAG2                 | ТСК                      |
| 6   | SMDAT                           | SMBus data       | JTAG3                 | TDI                      |
| 7   | GND                             | Ground           | JTAG4                 | TDO                      |
| 8   | +3.3v                           | +3.3 volt power  | JTAG5                 | TMS                      |
| 9   | JTAG1                           | +TRST#           | +3.3v                 | +3.3 volt power          |
| 10  | 3.3Vaux                         | 3.3v volt power  | +3.3v                 | +3.3 volt power          |
| 11  | 11 WAKE# Link Reactivation PV   |                  | PWRGD                 | Power Good               |
|     |                                 | Mecha            | nical Key             |                          |
| 12  | RSVD                            | Reserved         | GND                   | Ground                   |
| 13  | GND                             | Ground           | REFCLK+               | Reference Clock          |
| 14  | HSOp(0)                         | Transmitter Lane | REFCLK-               | Differential pair        |
| 15  | 0,<br>HSOn(0) Differential pair |                  | GND                   | Ground                   |
| 16  | GND                             | Ground           | HSIp(0)               | Receiver Lane 0,         |
| 17  | PRSNT#2                         | Hotplug detect   | HSIn(0)               | Differential pair        |

| 18 | GND                | Ground                      | GND     | Ground            |
|----|--------------------|-----------------------------|---------|-------------------|
| 19 | _                  | Transmitter Lane            | RSVD    | Reserved          |
| 20 | HSOp(1)<br>HSOn(1) | 1,<br>Differential pair GND |         | Ground            |
| 21 | GND                | Ground                      | HSIp(1) | Receiver Lane 1,  |
| 22 | GND                | Ground                      | HSIn(1) | Differential pair |
| 23 | HSOp(2)            | Transmitter Lane            | GND     | Ground            |
| 24 | HSOn(2)            | 2,<br>Differential pair     | GND     | Ground            |
| 25 | GND                | Ground                      | HSIp(2) | Receiver Lane 2,  |
| 26 | GND                | Ground                      | HSIn(2) | Differential pair |
| 27 | HSOp(3)            | Transmitter Lane            | GND     | Ground            |
| 28 | HSOn(3)            | 3,<br>Differential pair     | GND     | Ground            |
| 29 | GND                | Ground                      | HSIp(3) | Receiver Lane 3,  |
| 30 | RSVD               | Reserved                    | HSIn(3) | Differential pair |
| 31 | PRSNT#2            | Hot plug detect             | GND     | Ground            |
| 32 | GND                | Ground                      | RSVD    | Reserved          |
| 33 | HSOp(4)            | Transmitter Lane            | RSVD    | Reserved          |
| 34 | HSOn(4)            | 4,<br>Differential pair     | GND     | Ground            |
| 35 | GND                | Ground                      | HSIp(4) | Receiver Lane 4,  |
| 36 | GND                | Ground                      | HSIn(4) | Differential pair |
| 37 | HSOp(5)            | Transmitter Lane            | GND     | Ground            |
| 38 | HSOn(5)            | 5,<br>Differential pair     | GND     | Ground            |
| 39 | GND                | Ground                      | HSIp(5) | Receiver Lane 5,  |
| 40 | GND                | Ground                      | HSIn(5) | Differential pair |
| 41 | HSOp(6)            | Transmitter Lane            | GND     | Ground            |
| 42 | HSOn(6)            | 6,<br>Differential pair     | GND     | Ground            |

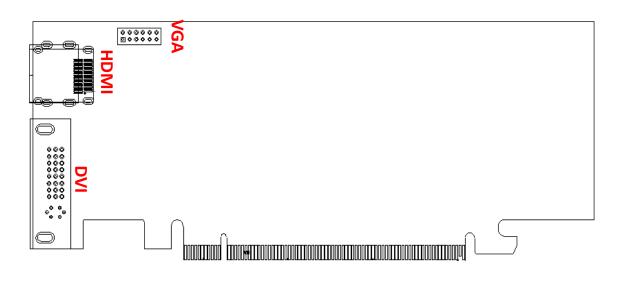
| · · · · · · · · · · · · · · · · · · · |          | ingent i tunet          |          | 1                 |
|---------------------------------------|----------|-------------------------|----------|-------------------|
| 43                                    | GND      | Ground                  | HSIp(6)  | Receiver Lane 6,  |
| 44                                    | GND      | Ground                  | HSIn(6)  | Differential pair |
| 45                                    | HSOp(7)  | Transmitter Lane        | GND      | Ground            |
| 46                                    | HSOn(7)  | 7,<br>Differential pair | GND      | Ground            |
| 47                                    | GND      | Ground                  | HSIp(7)  | Receiver Lane 7,  |
| 48                                    | PRSNT#2  | Hot plug detect         | HSIn(7)  | Differential pair |
| 49                                    | GND      | Ground                  | GND      | Ground            |
| 50                                    | HSOp(8)  | Transmitter Lane 8,     | RSVD     | Reserved          |
| 51                                    | HSOn(8)  | Differential pair       | GND      | Ground            |
| 52                                    | GND      | Ground                  | HSIp(8)  | Receiver Lane 8,  |
| 53                                    | GND      | Ground                  | HSIn(8)  | Differential pair |
| 54                                    | HSOp(9)  | Transmitter Lane 9,     | GND      | Ground            |
| 55                                    | HSOn(9)  | Differential pair       | GND      | Ground            |
| 56                                    | GND      | Ground                  | HSIp(9)  | Receiver Lane 9,  |
| 57                                    | GND      | Ground                  | HSIn(9)  | Differential pair |
| 58                                    | HSOp(10) | Transmitter Lane 10,    | GND      | Ground            |
| 59                                    | HSOn(10) | Differential pair       | GND      | Ground            |
| 60                                    | GND      | Ground                  | HSIp(10) | Receiver Lane 10, |
| 61                                    | GND      | Ground                  | HSIn(10) | Differential pair |
| 62                                    | HSOp(11) | Transmitter Lane 11,    | GND      | Ground            |
| 63                                    | HSOn(11) | Differential pair       | GND      | Ground            |
| 64                                    | GND      | Ground                  | HSIp(11) | Receiver Lane 11, |
| 65                                    | GND      | Ground                  | HSIn(11) | Differential pair |
| 66                                    | HSOp(12) | Transmitter Lane 12,    | GND      | Ground            |
| 67                                    | HSOn(12) | Differential pair       | GND      | Ground            |
| 68                                    | GND      | Ground                  | HSIp(12) | Receiver Lane 12, |
| 69                                    | GND      | Ground                  | HSIn(12) | Differential pair |

| 70 | HSOp(13) | Transmitter Lane 13,       | GND      | Ground                                 |  |
|----|----------|----------------------------|----------|----------------------------------------|--|
| 71 | HSOn(13) | Differential pair          | GND      | Ground                                 |  |
| 72 | GND      | Ground                     | HSIp(13) | Receiver Lane 13,                      |  |
| 73 | GND      | Ground                     | HSIn(13) | Differential pair                      |  |
| 74 | HSOp(14) | Transmitter Lane           | GND      | Ground                                 |  |
| 75 | HSOn(14) | 14,<br>Differential pair   | GND      | Ground                                 |  |
| 76 | GND      | Ground                     | HSIp(14) | Receiver Lane 14,                      |  |
| 77 | GND      | Ground                     | HSIn(14) | Differential pair                      |  |
| 78 | HSOp(15) | Transmitter Lane           | GND      | Ground                                 |  |
| 79 | HSOn(15) | 15,<br>Differential pair   | GND      | Ground                                 |  |
| 80 | GND      | Ground                     | HSIp(15) | Basaiyar Lana 15                       |  |
| 81 | PRSNT#2  | Hot plug present<br>detect | HSIn(15) | Receiver Lane 15,<br>Differential pair |  |
| 82 | RSVD#2   | Hot Plug Detect            | GND      | Ground                                 |  |



### 4. Power Consumption

• GFX-A3T2-51FM1

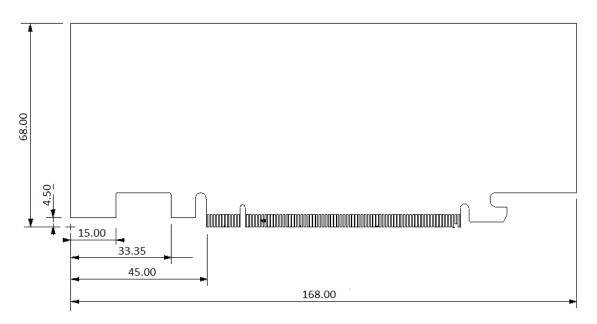

| Application    | Total ASIC Power + DRAM Power (W) |
|----------------|-----------------------------------|
| Static Windows | 15.23                             |

| Application         | Total ASIC Power + DRAM Power (W) |  |  |  |  |
|---------------------|-----------------------------------|--|--|--|--|
| 3D Mark Vantage FT6 | 67.23                             |  |  |  |  |



### 5. Output configuration and Board Dimension

### 5.1. Output Configuration

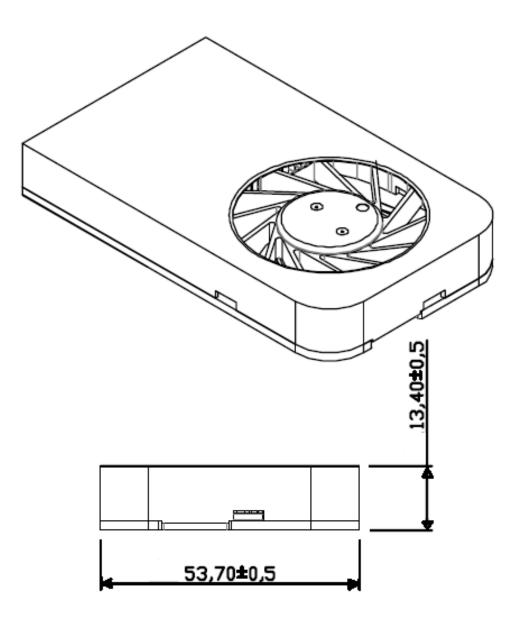


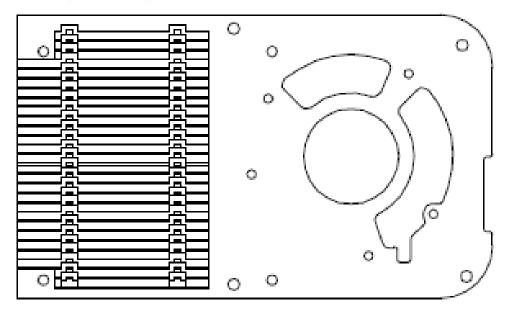


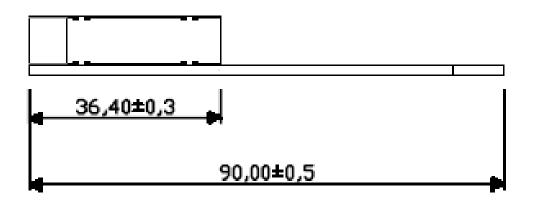


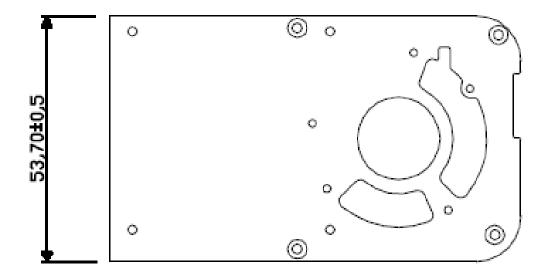

### 5.2 Board Dimension

### (Unit : mm)

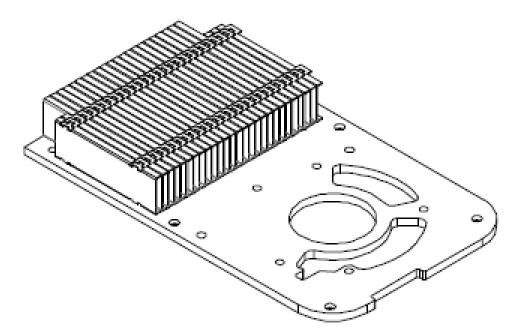


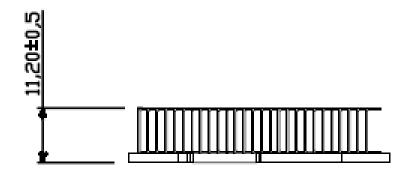


Tolerances : +/\_ 0.13 mm





# 6. Thermal Mechanism

(Unit : mm)
















## 7 Order Information

| Model            | GPU    | Form Factor       | Memory                    | DVI-D | HDMI | VGA | Bracket     | Thermal<br>Solution | Remark    |
|------------------|--------|-------------------|---------------------------|-------|------|-----|-------------|---------------------|-----------|
| AEGX-A3T2-01FMT1 | HD7750 | ATX (168 X 69 mm) | 128-bit wide, 1 GB, GDDR5 | 1     | 1    | 1   | Full Height | Fansink             | PCI-E 16X |

## 8 Change Log Update History

| Rev. | Data       | History                          |
|------|------------|----------------------------------|
| 0.1  | 2015/9/3   | 1. 1 <sup>st</sup> Draft         |
| 0.2  | 2015/09/15 | 1. Add Item 7: Order Information |