

# AMD E8860 PCIe® ADD-IN BOARD Datasheet AEGX-A5T8-10FMT1



#### **Enabling an Intelligent Planet**

## **CONTENTS**

| 1.                   | Feature                     |                                                    |  |  |  |
|----------------------|-----------------------------|----------------------------------------------------|--|--|--|
| 2.                   | Functional Overview4        |                                                    |  |  |  |
|                      | 2.1.                        | Memory Configuration Support4                      |  |  |  |
|                      | 2.2.                        | Acceleration Features4                             |  |  |  |
|                      | 2.3.                        | Avivo™ Display System5                             |  |  |  |
|                      | 2.4.                        | DVI/HDMI <sup>™</sup> /DisplayPort Features6       |  |  |  |
|                      | 2.5.                        | DVI/HDMI Features                                  |  |  |  |
|                      | 2.6.                        | DisplaPort 1.2 Features7                           |  |  |  |
|                      | 2.7.                        | Integrated HD-Audio Controller (Azalia) and Codec7 |  |  |  |
|                      | 2.8.                        | CRT DAC                                            |  |  |  |
|                      | 2.9.                        | Bus Support Features                               |  |  |  |
| 3.                   | PIN As                      | signment and Description9                          |  |  |  |
| 4.                   | Power                       | Consumption13                                      |  |  |  |
| 5.                   | Board Dimension14           |                                                    |  |  |  |
|                      | 5.1 Boa                     | ard Dimension14                                    |  |  |  |
| 6. Thermal Mechanism |                             |                                                    |  |  |  |
|                      | 6.1.                        | Fan-Sink Thermal Module15                          |  |  |  |
| 7.                   | Order Information           |                                                    |  |  |  |
| 8.                   | Change Log Update History17 |                                                    |  |  |  |



### 1. Feature

| Model Name                                | AEGX-A5T8-10FMT1                                      |  |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| Graphics Processing Unit                  |                                                       |  |  |  |  |  |
| GPU                                       | AMD Radeon E8860                                      |  |  |  |  |  |
| Process Technology                        | 28nm                                                  |  |  |  |  |  |
| GPU TDP                                   | 37W                                                   |  |  |  |  |  |
| Graphics Engine Operating Frequency (max) | 625Mhz                                                |  |  |  |  |  |
| Dimension                                 | ATX (145 x 111 mm)                                    |  |  |  |  |  |
| CPU Interface                             | PCI Express <sup>®</sup> 3.0 ( x16)                   |  |  |  |  |  |
| Shader Processing Units                   | 8 SIMD engines x 80 processing elements = 640 shaders |  |  |  |  |  |
| Floating Point Performance                | 768GFLOPs peak single-precision                       |  |  |  |  |  |
|                                           | 48FLOPs peak double-precision                         |  |  |  |  |  |
| DirectX <sup>®</sup> capability           | DirectX <sup>®</sup> 11.1                             |  |  |  |  |  |
| Shader Model                              | Shader Model 5.0                                      |  |  |  |  |  |
| OpenGL                                    | OpenGL 4.2                                            |  |  |  |  |  |
| OpenCL                                    | OpenCL 1.1/1.2+                                       |  |  |  |  |  |
| Unified Video Decoder (UVD)               | UVD3 for H.264, VC-1, MPEG-2, MPEG-4 part 2 decode    |  |  |  |  |  |
| Ν                                         | lemory                                                |  |  |  |  |  |
| Operating Frequency (max)                 | 1125 MHZ / 4.5 Gbps                                   |  |  |  |  |  |
| Configuration, type                       | 128-bit wide, 2 GB, GDDR5                             |  |  |  |  |  |
| Displa                                    | ay Interface                                          |  |  |  |  |  |
| DisplayPort 1.2                           | Mini Display port X 6                                 |  |  |  |  |  |



### 2. Functional Overview

#### 2.1. Memory Configuration Support

AMD Radeon<sup>™</sup> E8860 has four DRAM sequencers. Each DRAM channel is 32-bit wide. Four 128 Mb × 32 GDDR5 memory chips are embedded on the ASIC for a total of 2 GB memory.

#### 2.2. Acceleration Features

- Support for all DirectX<sup>®</sup> 11 features, including the full-speed 32-bit floating point per component operation:
  - Shader Model 5.0 geometry and pixel support in a unified shader architecture:
    - Vertex, pixel, geometry, compute, domain, and hull shaders.
    - ◆ 32- and 64-bit floating-point processing per component.
    - New advanced shader instructions, including flexible flow control with CPU-level flexibility on branching.
    - A nearly unlimited shader-instruction store, using an advanced caching system.
    - An advanced shader design, with an ultra-threading sequencer for high-efficiency operations.
    - A new advanced shader core, supporting native scalar instructions.
    - Advanced, high-performance branching support, including static and dynamic branching.
    - High dynamic-range rendering with floating-point blending, texture filtering, and anti-aliasing support.
    - 16- and 32-bit floating-point components for high dynamic-range computations.
    - Full anti-aliasing on renderable surfaces up to and including 128-bit floating-point formats.
    - A new read/write caching system, replacing texture cache with a unified read-write two-level cache.
- Support for OpenGL 4.1/4.1+.
- Support for OpenCL<sup>™</sup> 1.1/1.2+.
- Anti-aliasing filtering:
  - 2×/4×/8× MSAA (multi-sample anti-aliasing) modes are supported.
  - A multi-sample algorithm with gamma correction, programmable sample patterns, and centroid sampling.
  - Custom filter anti-aliasing with up to 12-samples per pixel.
  - An adaptive anti-aliasing mode.
  - Lossless color compression (up to 16:1).
- Anisotropic filtering:
  - Continuous anisotropic with 1× through 16× taps.
  - Up to 128-tap texture filtering.
  - Anisotropic biasing to allow trading quality for performance.
  - Improved anisotropic filtering with unified non-power of two-tap distribution and higher precision filter

## **ADVANTECH**

#### **Enabling an Intelligent Planet**

computations.

- Advanced texture compression (3Dc+<sup>™</sup>).
- High quality 4:1 compression for normal and luminance maps.
- Angle-invariant algorithm for improved quality.
- Single- or two-channel data format compatibility.
- 3D resources virtualized to a 40-bit virtual addressing space, for support of large numbers of render targets and textures.
- Up to 16k × 16k textures, including 128-bit/pixel texture are supported.
- Programmable arbitration logic maximizes memory efficiency and is software upgradeable.
- Fully associative texture, color, and z-cache design.
- Hierarchical z- and stencil-buffers with early z-test.
- Lossless z-buffer compression for both z and stencil.
- Fast z-buffer clear.
- Fast color-buffer clear.
- Z-cache optimized for real-time shadow rendering.
- Z- and color-compression resources virtualized to a 32-bit addressing space, for support of multiple render targets and textures simultaneously.

#### 2.3. Avivo<sup>™</sup> Display System

- The AMD Avivo<sup>™</sup> display system supports VGA, VESA super VGA, and accelerator mode graphics display on six independent display controllers.
- The full features of the AMD Avivo display system are outlined in the following sections.
- Six independent display controllers that support true 30-bpp (bits per pixel) throughout the display pipe.
- Support for display resolutions up to 4096 × 2160 @ 30 Hz per display output, which do not oversubscribe available memory bandwidth.
- Flexible support for various combinations of display outputs based on clock dependencies:
  - Two internal display PLLs (phase-locked loops) and an integrated DisplayPort reference clock can support:
    - Any two legacy displays and up to four DisplayPorts, or
    - One legacy display and up to five DisplayPorts, or
    - Six DisplayPorts eDP (embedded DisplayPort) is also considered a DisplayPort).
- Advanced video capabilities, including high-fidelity gamma, color correction, and scaling.
- A high-precision color pipe with the support of XR-biased sRGB and xvYCC formats.
- An adaptive per-pixel de-interlacing and frame-rate conversion (temporal filtering).
- An enhanced dithering algorithm for LCD panels.
- Full RMX for sources up to 2560 pixels/line.
- HDCP can be supported on six independent displays, such as HDMI<sup>™</sup>, DVI, or DisplayPort.
  - **Note:** HDCP is available only to licensed HDCP buyers.
- HDCP Protection:

#### **Enabling an Intelligent Planet**

- Key information is stored in the ASIC.
- An external ROM is not needed.
- Protects both audio and video content on all HDMI/DisplayPort outputs.
- Adaptive backlight modulation to reduce panel-power consumption in embedded applications.
- An improved memory-access pattern to reduce the memory-power consumption in embedded applications.
- 3D display capabilities for both graphic and overlay contents.

#### 2.4. DVI/HDMI<sup>™</sup>/DisplayPort Features

- On TMDSA, TMDSB, TMDSC, and TMDSD the following display configurations are supported.
  - Two single-link DVIs (any two from TMDSA, TMDSB, TMDSC, and TMDSD)
  - Two dual-link DVIs
  - HDMI
- On LVDSE and LVDSF the following display configurations are supported.
- One dual-link LVDS
- One single-link LVDS
- One dual-link DVI
- Two single-link DVIs
- HDMI
  - On TMDPA, TMDPB, TMDPC, and TMDPD the following display configurations are supported.
- Four version 1.2 DisplayPorts
  - On LVDPE and LVDPF the following display configurations are supported.
- Two version 1.2 DisplayPorts
  - Optional dithering or frame modulation from the 30-bpp internal display pipeline to 24- or 18-bit outputs on the DVI/HDMI/DisplayPort if not using a 30-bpp output mode.

#### 2.5. DVI/HDMI Features

- Advanced DVI capability supporting 10-bit HDR (high dynamic range) output.
- Supports industry-standard CEA-861B video modes including 480p, 720p, 1080i, and 1080p. For a full list of currently supported modes, contact your local AMD support person.
- Maximum pixel rates for 24-bpp outputs are:
  - DVI—162 MP/s (megapixels per second) for single-link DVI
  - DVI—268.5 MP/s for dual-link DVI
  - HDMI—297 MP/s.
- Compliant with the DVI electrical specification.
- The HDMI specification meets the Windows Vista<sup>®</sup> logo requirements.



#### 2.6. DisplayPort 1.2 Features

- Supports all the mandatory features of the *DisplayPort Standard Version 1.2* and the following optional features on links A, B, C, D, E, and F:
  - ACM packet-type support.
- ISRC packet-type support.
  - Each DisplayPort link can transport up to six video streams; one from each display engine.
  - Each DisplayPort link can support three options for the number of lanes and three options for link-data rate as follows:
- Four, two, or one lane(s).
- 5.4-, 2.7-, or 1.62-GHz link-data rate per lane.
- Supports all video modes supported by the display controller that do not oversubscribe the link bandwidth.
  - Examples of supported pixel-rate/resolution for four lanes at 5.4-GHz link rate:
    - Link bandwidth allows pixel clocks of up to 718 MP/s for 24 bpp or 574 MP/s for 30 bpp.
    - 2560 × 2048 @ 60Hz, 30 bpp is supported.
  - Examples of supported pixel-rate/resolution for two lanes at 5.4-GHz link rate:
    - Link bandwidth allows pixel clocks of up to 359 MP/s for 24 bpp or 287 MP/s for 30 bpp.
    - ◆ 2560 × 1600 @ 60Hz, 30 bpp is supported.
- Enhanced audio capabilities:
  - Supports PCM audio rates up to 192 kHz.
  - Dolby-TrueHD bit stream and DTS-HD Master Audio bit stream capable.

#### 2.7. Integrated HD-Audio Controller (Azalia) and Codec

- HD-audio HDMI, DisplayPort, and wireless display outputs.
  - Multiple output stream DMAs.
  - Maximum output bandwidth of 73.728 Mbit/s.
  - Low power ECN support.
  - Hardware silent stream.
  - Function level reset.
  - Compatible Microsoft<sup>®</sup> UAA driver support for basic audio.
  - For advanced functionality (as follows), an AMD or a third party driver is required.
  - LPCM:
    - Speaker formats: 2.0, 2.1, 3.0, 4.0, 5.1, 6.1, and 7.1
    - Sample rates: 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz
    - Bits per sample: 16, 20, and 24
- Non-HBR Compressed audio pass-through up to 6.144 Mbps:

#### **Enabling an Intelligent Planet**

- Supports AC-3, MPEG1, MP3 (MPEG1 layer 3), MPEG2, AAC, DTS, ATRAC, Dolby Digital+, WMA Pro, and DTS-HD.
- HBR compressed audio pass-through up to 24.576 Mbps:
  - Supports DTS-HD Master Audio and Dolby True HD.
- Plug-and-Play:
  - Sink audio format capabilities declaration.
  - Sink information.
  - AV association.
- Lip sync information.
- HDCP content protection.

#### 2.8. CRT DAC

- One integrated triple 10-bit DAC with built-in reference circuit, which takes output from either one of the internal display controllers (primary or secondary).
- A single RGB-CRT output.
- Support for the stereo-sync signal to drive a 3D display.
- A maximum pixel frequency of 400 MHz.
- An individual power-down feature for each of the three guns.
- Compliant with the VSIS electrical specification.
- Integrated with a built-in bandgap reference circuitry.
- A static detection circuitry (S\_detect) for hot-plug/unplug capability.
- An integrated static monitor-detection circuit.

#### 2.9. Bus Support Features

- Compliant with the PCI Express<sup>®</sup> Base Specification Revision 3.0, up to 8.0 GT/s.
- Fully inter-operative with PCI Express Base Specification Revision 2.1 and earlier devices.
- Supports ×1, ×2, ×4, ×8, and ×16 lane widths.
- Supports 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s link-data rates.
- Supports ×16 lane reversal where the receivers on lanes 0 to 15 on the graphics endpoint are mapped to the transmitters on lanes 15 down to 0 on the root complex.
- Supports ×16 lane reversal where the transmitters on lanes 0 to 15 on the graphics endpoint are mapped to the receivers on lanes 15 down to 0 on the root complex (requires corresponding support on the root complex).
- Supports full-swing and low-swing transmitter output levels.

**ADVANTECH** Enabling an Intelligent Planet

## 3. PIN Assignment and Description

| Pin            | Sid     | e B Connector                            | Side A Connector |                          |  |
|----------------|---------|------------------------------------------|------------------|--------------------------|--|
| #              | Name    | Description                              | Name             | Description              |  |
| 1              | +12v    | +12 volt power                           | PRSNT#1          | Hot plug presence detect |  |
| 2              | +12v    | +12 volt power                           | +12v             | +12 volt power           |  |
| 3              | RSVD    | Reserved                                 | +12v             | +12 volt power           |  |
| 4              | GND     | Ground                                   | GND              | Ground                   |  |
| 5              | SMCLK   | SMBus clock                              | JTAG2            | ТСК                      |  |
| 6              | SMDAT   | SMBus data                               | JTAG3            | TDI                      |  |
| 7              | GND     | Ground                                   | JTAG4            | TDO                      |  |
| 8              | +3.3v   | +3.3 volt power                          | JTAG5            | TMS                      |  |
| 9              | JTAG1   | +TRST#                                   | +3.3v            | +3.3 volt power          |  |
| 10             | 3.3Vaux | 3.3v volt power                          | +3.3v            | +3.3 volt power          |  |
| 11             | WAKE#   | WAKE# Link Reactivation PWRGD Power Good |                  | Power Good               |  |
| Mechanical Key |         |                                          |                  |                          |  |
| 12             | RSVD    | Reserved                                 | GND              | Ground                   |  |
| 13             | GND     | Ground                                   | REFCLK+          | Reference Clock          |  |
| 14             | HSOp(0) | Transmitter Lane 0,                      | REFCLK-          | Differential pair        |  |
| 15             | HSOn(0) | Differential pair                        | GND              | Ground                   |  |
| 16             | GND     | Ground                                   | HSIp(0)          | Receiver Lane 0,         |  |
| 17             | PRSNT#2 | Hotplug detect                           | HSIn(0)          | Differential pair        |  |
| 18             | GND     | Ground                                   | GND              | Ground                   |  |
| 19             | HSOp(1) | Transmitter Lane 1,                      | RSVD             | Reserved                 |  |
| 20             | HSOn(1) | Differential pair                        | GND              | Ground                   |  |
| 21             | GND     | Ground                                   | HSIp(1)          | Receiver Lane 1,         |  |
|                |         | Consumed                                 | HSIn(1)          | Differential pair        |  |
| 22             | GND     | Ground                                   | 11511(1)         |                          |  |

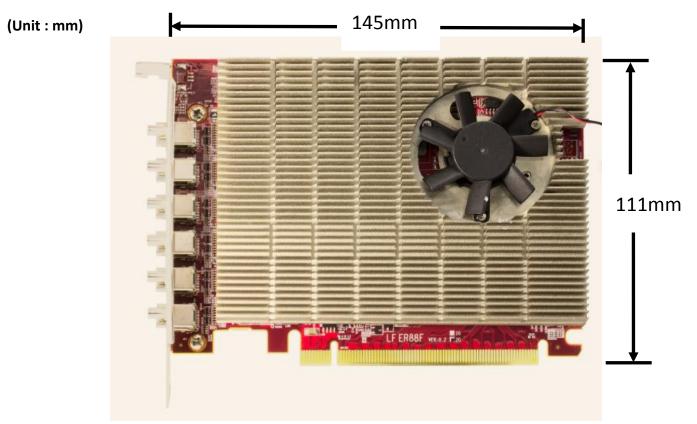
| Pin | Sid     | e B Connector                     | Side A Connector     |                   |  |
|-----|---------|-----------------------------------|----------------------|-------------------|--|
| #   | Name    | Description                       | Name                 | Description       |  |
| 24  | HSOn(2) | Differential pair                 | GND                  | Ground            |  |
| 25  | GND     | Ground                            | HSIp(2)              | Receiver Lane 2,  |  |
| 26  | GND     | Ground                            | HSIn(2)              | Differential pair |  |
| 27  | HSOp(3) | Transmitter Lane 3,               | GND                  | Ground            |  |
| 28  | HSOn(3) | Differential pair                 | GND                  | Ground            |  |
| 29  | GND     | Ground                            | HSIp(3)              | Receiver Lane 3,  |  |
| 30  | RSVD    | Reserved                          | HSIn(3)              | Differential pair |  |
| 31  | PRSNT#2 | Hot plug detect                   | GND                  | Ground            |  |
| 32  | GND     | Ground                            | RSVD                 | Reserved          |  |
| 33  | HSOp(4) | Transmitter Lane 4, RSVD Reserved |                      | Reserved          |  |
| 34  | HSOn(4) | Differential pair                 | GND                  | Ground            |  |
| 35  | GND     | Ground                            | HSIp(4)              | Receiver Lane 4,  |  |
| 36  | GND     | Ground                            | HSIn(4)              | Differential pair |  |
| 37  | HSOp(5) | Transmitter Lane 5,               | GND                  | Ground            |  |
| 38  | HSOn(5) | Differential pair                 | tial pair GND Ground |                   |  |
| 39  | GND     | Ground                            | HSIp(5)              | Receiver Lane 5,  |  |
| 40  | GND     | Ground                            | HSIn(5)              | Differential pair |  |
| 41  | HSOp(6) | Transmitter Lane 6,               | GND                  | Ground            |  |
| 42  | HSOn(6) | Differential pair                 | GND                  | Ground            |  |
| 43  | GND     | Ground                            | HSIp(6)              | Receiver Lane 6,  |  |
| 44  | GND     | Ground                            | HSIn(6)              | Differential pair |  |
| 45  | HSOp(7) | Transmitter Lane 7, GND Ground    |                      | Ground            |  |
| 46  | HSOn(7) | Differential pair                 | GND                  | Ground            |  |
| 47  | GND     | Ground                            | HSIp(7)              | Receiver Lane 7,  |  |
| 48  | PRSNT#2 | Hot plug detect                   | HSIn(7)              | Differential pair |  |
| 49  | GND     | Ground                            | GND                  | Ground            |  |
| 50  | HSOp(8) | Transmitter Lane 8,               | RSVD                 | Reserved          |  |

| Pin | _        | le B Connector               |                              | Side A Connector  |  |
|-----|----------|------------------------------|------------------------------|-------------------|--|
| #   | Name     | Description                  | Name                         | Description       |  |
| 51  | HSOn(8)  | Differential pair            | Differential pair GND Ground |                   |  |
| 52  | GND      | Ground HSIp(8) Receiver Lane |                              | Receiver Lane 8,  |  |
| 53  | GND      | Ground                       | HSIn(8)                      | Differential pair |  |
| 54  | HSOp(9)  | Transmitter Lane 9,          | GND                          | Ground            |  |
| 55  | HSOn(9)  | Differential pair            | GND                          | Ground            |  |
| 56  | GND      | Ground                       | HSIp(9)                      | Receiver Lane 9,  |  |
| 57  | GND      | Ground                       | HSIn(9)                      | Differential pair |  |
| 58  | HSOp(10) | Transmitter Lane 10,         | GND                          | Ground            |  |
| 59  | HSOn(10) | Differential pair            | GND                          | Ground            |  |
| 60  | GND      | Ground                       | Ground HSIp(10) Receiv       |                   |  |
| 61  | GND      | Ground                       | HSIn(10)                     | Differential pair |  |
| 62  | HSOp(11) | Transmitter Lane 11,         | GND                          | Ground            |  |
| 63  | HSOn(11) | Differential pair            | GND                          | Ground            |  |
| 64  | GND      | Ground HSIp(11) Receiver La  |                              | Receiver Lane 11, |  |
| 65  | GND      | Ground                       | HSIn(11)                     | Differential pair |  |
| 66  | HSOp(12) | Transmitter Lane 12,         | GND                          | Ground            |  |
| 67  | HSOn(12) | Differential pair            | GND                          | Ground            |  |
| 68  | GND      | Ground                       | HSIp(12)                     | Receiver Lane 12, |  |
| 69  | GND      | Ground                       | HSIn(12)                     | Differential pair |  |
| 70  | HSOp(13) | Transmitter Lane 13,         | GND                          | Ground            |  |
| 71  | HSOn(13) | Differential pair            | GND                          | Ground            |  |
| 72  | GND      | Ground HSIp(13) Receiver Lan |                              | Receiver Lane 13, |  |
| 73  | GND      | Ground                       | HSIn(13)                     | Differential pair |  |
| 74  | HSOp(14) | Transmitter Lane 14,         | GND                          | Ground            |  |
| 75  | HSOn(14) | Differential pair            | GND                          | Ground            |  |
| 76  | GND      | Ground                       | HSIp(14)                     | Receiver Lane 14, |  |
| 77  | GND      | Ground                       | HSIn(14)                     | Differential pair |  |

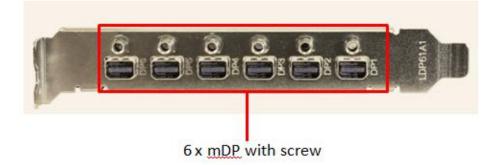
| Pin | Side B Connector |                         | Side A Connector |                   |  |
|-----|------------------|-------------------------|------------------|-------------------|--|
| #   | Name Description |                         | Name             | Description       |  |
| 78  | HSOp(15)         | Transmitter Lane 15,    | GND              | Ground            |  |
| 79  | HSOn(15)         | Differential pair       | GND              | Ground            |  |
| 80  | GND              | Ground                  | HSIp(15)         | Receiver Lane 15, |  |
| 81  | PRSNT#2          | Hot plug present detect | HSIn(15)         | Differential pair |  |
| 82  | RSVD#2           | Hot Plug Detect         | GND              | Ground            |  |



### 4. Power Consumption


| Application          | Total ASIC Power + DRAM Power (W) |
|----------------------|-----------------------------------|
| Static Windows - 65c | 6.96                              |

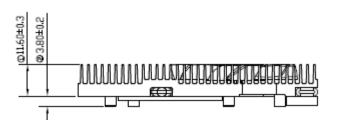
| Application         | Total ASIC Power + DRAM Power (W) |  |  |
|---------------------|-----------------------------------|--|--|
| 3D Mark Vantage FT6 | 31.76                             |  |  |

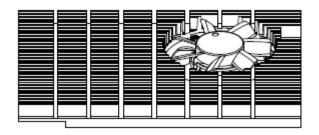


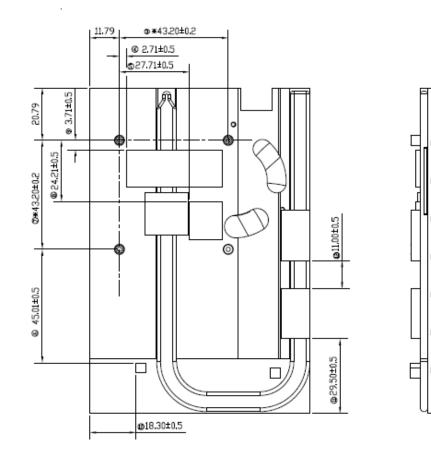

### 5. Board Dimension

#### 5.1 Board Dimension

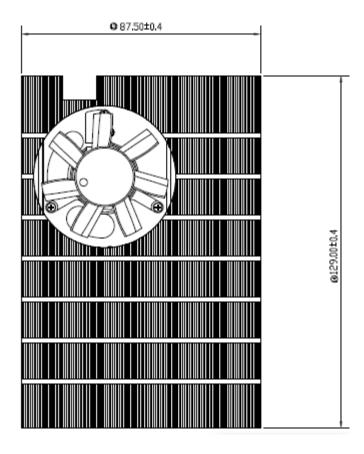



#### Tolerances: +/\_ 0.13 mm




### 6. Thermal Mechanism


#### 6.1. Fan-Sink Thermal Module











| Tolerances |          |  |  |
|------------|----------|--|--|
| 0-10       | +/- 0.1  |  |  |
| 10-50      | +/- 0.15 |  |  |
| 50-100     | +/- 0.2  |  |  |
| 100~       | +/- 0.25 |  |  |



**Enabling an Intelligent Planet** 

## 7 Order Information

| Model            | GPU   | Form Factor        | Memory                    | MiniDP | Bracket     | Thermal<br>Solution | Remark    |
|------------------|-------|--------------------|---------------------------|--------|-------------|---------------------|-----------|
| AEGX-A5T8-10FMT1 | E8860 | ATX (145 X 111 mm) | 128-bit wide, 2 GB, GDDR5 | 6      | Full Height | Fansink             | PCI-E 16X |

### 8 Change Log Update History

| Rev. | Date       | Description                                              |
|------|------------|----------------------------------------------------------|
| 0.1  | 2014/4/10  | 1 <sup>st</sup> Draft.                                   |
| 0.2  | 2015/09/15 | Update Thermal Solution<br>Add Item 7: Order Information |